
www.manaraa.com

Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Alias Analysis in LLVM
Sheng-Hsiu Lin
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Lin, Sheng-Hsiu, "Alias Analysis in LLVM" (2015). Theses and Dissertations. 2689.
http://preserve.lehigh.edu/etd/2689

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2689?utm_source=preserve.lehigh.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

www.manaraa.com

Alias Analysis in LLVM

by

Sheng-Hsiu Lin

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

May 2015

www.manaraa.com

c© Copyright by Sheng-Hsiu Lin 2015

All Rights Reserved

ii

www.manaraa.com

This thesis is accepted and approved in partial fulfillment of the requirements for the degree

of Master of Science.

Date

Dissertation Advisor

Chairperson of Department

iii

www.manaraa.com

Acknowledgements

Thanks to all fellow researchers in the SOS Lab at Lehigh University including Ben Niu, Shen

Liu, Zhiyuan Wan and Dongrui Zeng for their contributions to this research. Special thanks to

my advisor Gang Tan for his invaluable guidance.

iv

www.manaraa.com

Contents

Acknowledgements iv

List of Tables vii

List of Figures viii

Abstract 1

1 Introduction to Alias Analysis 2

2 Alias Analysis Survey 3

2.1 Field-Sensitivity . 3

2.2 Intra-Procedural v.s. Inter-Procedural . 4

2.3 Context-Sensitivity . 5

2.4 Flow-Sensitivity . 5

3 Alias Analysis Algorithms 7

3.1 Andersen’s Points-To Analysis . 7

3.2 Steensgaard’s Points-To Analysis . 8

3.3 Data Structure Analysis (DSA) . 8

4 Alias Analysis in LLVM 10

5 Implementation of Steensgaard’s Algorithm 12

5.1 Store Instruction . 14

v

www.manaraa.com

5.2 Load Instruction . 15

5.3 Call Instruction . 16

5.4 GetElementPtr Instruction . 20

5.5 PHI Instruction . 21

5.6 BitCast Instruction . 22

5.7 IntToPtr Instruction . 23

5.8 Select Instruction . 24

5.9 Other Pointer Related Instructions . 25

6 Evaluation 26

6.1 Precision . 27

6.2 Time . 29

6.3 Memory . 30

7 Conclusion 32

Bibliography 33

Biography 34

vi

www.manaraa.com

List of Tables

3.1 Four Andersen constraint types . 7

3.2 Four Steensgaard constraint types . 8

6.1 Evaluation benchmarks . 26

6.2 May-alias percentage comparison . 28

6.3 Chained may-alias percentage comparison . 29

6.4 Analysis time comparison . 30

6.5 Memory usage comparison . 31

vii

www.manaraa.com

List of Figures

5.1 Steensgaard’s base constraint . 13

5.2 Steensgaard’s simple constraint . 13

5.3 Steensgaard’s complex1 constraint . 14

5.4 Steensgaard’s complex2 constraint . 14

6.1 May-alias percentage comparison . 28

6.2 Chained may-alias percentage comparison . 29

6.3 Analysis time comparison . 30

6.4 Memory usage comparison . 31

viii

www.manaraa.com

Abstract

Alias analysis is a study of the relations between pointers. It has important applications in code

optimization and security. This research introduces the fundamental concepts of alias analysis.

It explains different approaches of alias analysis with examples. It provides a survey of some very

important pointer analysis algorithms. LLVM interface is introduced along with the alias analyses

that are currently available on it. This research implementes a Steensgaard’s pointer analysis on

LLVM. The philosophy of this implementation is explained in detail. Evaluations of rule based

basic alias analysis, Andersen’s pointer analysis, Steensgaard’s pointer analysis and data structure

analysis are provided with experimental results on their precision, time and memory usage.

1

www.manaraa.com

Chapter 1

Introduction to Alias Analysis

The purpose of alias analysis is to determine all possible ways a program may access some given

memory locations. A set of pointers are said to be in an alias group if they all point to the same

memory locations. Alias analysis is sometimes referred to as pointer analysis. However, it is not

to be confused with points-to analysis, which is a sub-problem of alias analysis. Points-to analysis

computes sets of memory locations that each pointer may point to. Such result can be useful

in some applications, and can be used to derive alias information. Alias analysis and points-to

analysis are often implemented by performing static code analysis.

Alias analysis is very important in compiler theory. Some of its most notable applications

include code optimization and security. Compiler level optimization needs pointer aliasing in-

formation to perform dead code elimination (removing code that does not affect the program’s

result), redundant load/store instruction elimination, instruction scheduling (rearranging instruc-

tions) and more. Program security enforcement at compiler level uses alias analysis to help detect

memory leaks and memory related security holes.

2

www.manaraa.com

Chapter 2

Alias Analysis Survey

There are many varieties of alias analysis. They are often categorized by properties such as

field-sensitivity, inter-procedural v.s. intra-procedural, context-sensitivity and flow-sensitivity.

2.1 Field-Sensitivity

Field-sensitivity is the strategy that governs the way alias analysis models fields in built-in or

user defined data structures. There are three approaches to field-sensitivity – field-sensitive,

field-insensitive and field-based. Consider the following code:

1 struct { int a, b; } x, y;

1. Field-sensitive approach models each field of each struct variable, hence creating four nodes

(we use node to denote a pointer, variable or memory location) – x.a, x.b, y.a and y.b.

2. Field-insensitive approach models each struct variable, but does not model their fields. This

example is modeled by two nodes – x.* and y.*.

3. Field-based approach models each field without modeling the struct variables. This example

is modeled by two nodes – *.a and *.b.

The same principle applies when dealing with arrays. Consider a C integer array int a[10].

3

www.manaraa.com

Field-insensitive approach models this with only one node: a[*], while field-sensitive approach

creates ten nodes: a[0], a[1], ..., a[10].

Clearly a field-sensitive approach provides a more fine grained model and hence better pre-

cision. However, the number of nodes increases rapidly when there are nested structs and/or

arrays.

2.2 Intra-Procedural v.s. Inter-Procedural

An intra-procedural alias analysis analyzes the bodies of each functions. It does not consider

how each function interact with other functions. Specifically, intra-procedural alias analysis does

not handle pointer parameter passing or functions that return pointers. On the contrary, inter-

procedural alias analysis deals with the pointer behaviors due to function calls.

A pseudo-code where pointer parameter passing is involved:

1 void fn1(int* p) { p = ... }

2 void fn2() { int *q; fn1(q); }

A pseudo-code where function is returning pointers:

1 int* id(int* p){ return p; }

2

3 void fn(){

4 int *q;

5 q = id(q);

6 }

Intra-procedural is less expansive to perform, but has lower precision. It is often easier to

implement an intra-procedural alias analysis before extending to inter-procedural alias analysis.

Intra/inter-procedural property is highly related to context-sensitivity since a context-sensitive

analysis has to be an inter-procedural analysis.

4

www.manaraa.com

2.3 Context-Sensitivity

Context-sensitivity governs how function calls are analyzed. This property yields two types of

alias analyses ? context-sensitive and context-insensitive alias analyses. Context-sensitive analysis

considers the calling context (caller) when analyzing the target of a function call (callee). Consider

the following code:

1 int a,b;

2 int *x;

3

4 void f(void) { *x++; }

5

6 void main() {

7 x = &a;

8 f();

9

10 x = &b;

11 f();

12 }

In this code, function-f is called twice. It increases the value of variable-a the first time it

was called, and increases the value of variable-b the second time it was called. A context-sensitive

alias analyzer needs to have a way to create an abstract description for function-f so that every

time it is called, the analyzer can apply the calling context to the abstract description.

Context-sensitive provides a finer grain model of the static code hence results in higher preci-

sion. However, it increases the complexity of the analysis.

2.4 Flow-Sensitivity

Flow-sensitivity is the principle that governs wether or not an analysis takes the order of code

into account. There are flow-sensitive and flow-insensitive analyses.

A flow-insensitive analysis produces one set of alias result for the entire program it analyzes.

This result is the sets of memory locations that pointers may points to at any point of the program.

5

www.manaraa.com

It does not consider the order of the code. A flow-sensitive analysis computes alias information

at every point of the program. Consider the following code:

1 int a, b;

2 int *p;

3 p = &a;

4 p = &b;

The result of a flow-insensitive analysis would be: pointer-p may points to variable-a or

variable-b. A flow-sensitive analysis is capable to determine that between line 3 and line 4,

pointer-p points to variable-a, and after line 4, pointer-p points to variable-b.

Notice that the complexity of flow-sensitive analysis increases tremendously when a program

has many conditional statements, loops or recursive functions. A complete control flow graph

is required in order to perform flow-sensitive analysis. Therefore flow-sensitive analysis is much

more precise, but is too expansive for most cases to perform on a whole program.

6

www.manaraa.com

Chapter 3

Alias Analysis Algorithms

Alias analysis is an active research area due to its important applications noted in the introduction.

Algorithms for each type of alias analyses have been developed over the past two decades. Each

of them has distinct features that make them valuable to certain applications. They are presented

in the following sections.

3.1 Andersen’s Points-To Analysis

Andersen’s points-to analysis was proposed by Lars Ole Andersen in 1994 [1]. It is inter-

procedural, flow-insensitive and context-insensitive. The fundamental idea is to transform pro-

grams into sets of subset constraints, and solve these constraints for the points-to results. The

transformation from program to constraint is defined in the following table.

Constraint type Assignment Constraint Meaning

Base a = &b a ⊇ {b} loc(b) ∈ pts(a)

Simple a = b a ⊇ b pts(a) ⊇ pts(b)
Complex a = ∗b a ⊇ ∗b ∀v ∈ pts(b), pts(a) ⊇ pts(v)

Complex ∗a = b ∗a ⊇ b ∀v ∈ pts(a), pts(v) ⊇ pts(b)

Table 3.1: Four Andersen constraint types

There are two approaches to implementing Andersen’s points-to analysis – compute the points-

to sets directly as one works through each constraint; or cast into graph and compute the closure.

The complexity of Andersen’s points-to analysis is O(n3) where n is the number of nodes

(pointers). The time required to run Andersen’s points-to analysis grows exponentially as the

7

www.manaraa.com

program size grows since the number of nodes (pointers) tends to grow as program size increases.

There are many efforts to optimize it. Cycle elimination is one important method as proposed

in [4] and [3].

3.2 Steensgaard’s Points-To Analysis

Steensgaard’s algorithm is very similar to Andersen’s approach. It is also inter-procedural, flow-

insensitive and context-insensitive. It was proposed in 1996 by Bjarne Steensgaard [8]. Steens-

gaard’s algorithm also transforms programs into constraints, and solves the sets of constraints to

obtain points-to results. The main difference is that instead of collecting subset constraints, it

collects equivalence constraints.

Constraint type Assignment Constraint Meaning

Base a = &b a ⊇ {b} loc(b) ∈ pts(a)

Simple a = b a = b pts(a) = pts(b)

Complex a = ∗b a = ∗b ∀v ∈ pts(b), pts(a) = pts(v)

Complex ∗a = b ∗a = b ∀v ∈ pts(a), pts(v) = pts(b)

Table 3.2: Four Steensgaard constraint types

These constraints are much simpler, but produce less precise model. They can be modeled

using the disjoint-set data structure, and can be solved efficiently using the Union-Find algo-

rithm. The implementation detail is covered in Chapter 5. The complexity is nearly linear with

O(nα(n)) where n is the number of nodes and α(n) is the inverse Ackermann function. This

makes Steensgaard highly scalable.

3.3 Data Structure Analysis (DSA)

Data structure analysis is a Steensgaard style (unification based) pointer analysis algorithm. It

is flow-insensitive but context-sensitive and field-sensitive. It was first proposed by Chris Lattner

in 2007 [7]. Full context-sensitive and field-sensitive pointer analysis were thought to be too

expansive to perform for practical uses. DSA is able to achieve a scalable and fast context-sensitive

and field-sensitive pointer analysis by giving up context-sensitivity within strongly connected

components of the call graph.

8

www.manaraa.com

Context-sensitivity and field-sensitivity are obtained by performing heap cloning. Heap cloning

creates an abstract description for each data structure or function, and such abstract description

is instantiated when they are called. By doing this, we are able to model different instances of a

data structure created at different places in a program.

DSA can be performed in three phases: (1) local analysis phase, (2) bottom-up analysis phase

and (3) top-bottom analysis phase. In the local analysis phase, a Local Data Structure Graph

is computed for each function. It is a summary of the memory objects accessible within the

function. The bottom-up analysis phase inlines the caller DS graph with the callee’s information.

The top-bottom phase fills in incomplete argument information by merging caller DS graphs with

callee DS graphs.

Context-sensitivity and field-sensitivity approach leads to significant pointer analysis precision

gain. It has been shown that DSA can be as precise as Andersen’s for many benchmark cases [7].

9

www.manaraa.com

Chapter 4

Alias Analysis in LLVM

LLVM is a collection of toolchains of compiler components. LLVM began as a research project

at the University of Illinois. It is open source and licensed under the “UIUC” BSD-Style license.

It is designed to support compiler implementation of arbitrary language. LLVM has a well de-

fined LLVM intermediate representation (LLVM IR). Any compiler implemented on top of LLVM

generates IR code from the source language. Clang and Clang++ are the two most well known

and widely used C/C++ compilers implemented on LLVM. LLVM provides a set of libraries and

some builtin passes that can perform optimizations, code transformation and static analysis. The

powerful LLVM Core libraries makes it simple for developers to develop their own passes. For this

reason, we are investigating the alias analysis implementations on LLVM, and also developing our

own alias analysis implementation on LLVM.

The most recent LLVM release (LLVM 3.6) ships with only one alias analysis pass included. It

is the basic alias analysis (-basic-aa). Basic-aa is a rule based alias analysis. It uses the following

simple but important rules to compute alias information:

• Distinct globals, stack allocations, and heap allocations can never alias.

• Globals, stack allocations, and heap allocations never alias the null pointer.

• Different fields of a structure do not alias.

• Indexes into arrays with statically differing subscripts cannot alias.

• Many common standard C library functions never access memory or only read memory.

• Pointers that obviously point to constant globals “pointToConstantMemory”.

10

www.manaraa.com

• Function calls can not modify or references stack allocations if they never escape from the

function that allocates them (a common case for automatic arrays).

In LLVM’s earlier releases, it included a Steensgaard’s alias analysis pass, and a DSA pass.

However, Steensgaard’s algorithm was patented by Microsoft, and DSA algorithm uses Steens-

gaard’s algorithm. They were removed from LLVM in 2006 due to patent issues and lack of

maintenance.

Jia Chen, a researcher at the University of Texas at Austin has developed an Andersen alias

analysis implementation for the current LLVM release (3.5/3.6). In addition, there is a group

of developers who are working to bring DSA alias analysis to current release. In my research, I

implemented Steensgaard’s algorithm on LLVM 3.5, hich will be presented later in detail.

11

www.manaraa.com

Chapter 5

Implementation of Steensgaard’s

Algorithm

Steensgaard’s algorithm as mentioned earlier, can be efficiently implemented using the disjoint-set

data structure and the Union-Find algorithm. Disjoint-set data structure partitions a set of nodes

into disjoint subsets, and Union-Find algorithm provides two operations: union and find. Union

operation merges two disjoint sets into one set, and find operation determines the representative

node of the subset in which any given node belongs to. When optimization methods are used,

Union-Find can achieve O(α(n)) which is almost constant in practice.

Using the disjoint-set data structure, we first create a node for each pointer found in the

program. We refer to the collection of all nodes as the universe. We use the root node of each

set as the representative node. So initially every node is the representative node of its own set,

and all sets are disjoint. Every representative node has a pointer pointing to the node that the

set represented by it points to. The points-to of each node is initialized to NULL as we do not

have any points-to knowledge, yet. We then walk through the program statement by statement.

Nodes are then merged and points-to relation updated according to the four types of constraints

as described below.

1. Base constraint a = &b: merge node-b with the set of nodes that node-a is pointing to

and update the points-to of node-a to the new representative node of the merged set. Fur-

thermore, when a merge is performed, we recursively merge downward in the sense that if

12

www.manaraa.com

node-p and node-q are merged, we merge the points-to of node-p and the points-to of node-q.

If node-a was originally not pointing to any node, then we add a points-to relation from

node-a to node-b.

Figure 5.1: Steensgaard’s base constraint

2. Simple constraint a = b: merge node-a and node-b and perform recursive downward merging.

Figure 5.2: Steensgaard’s simple constraint

3. Complex constraint type 1 a = ∗b: merge node-a with the points-to set of node-b and perform

recursive downward merging. If node-b was originally not pointing to any node, then we

add a points-to relation from node-b to node-a.

4. Complex constraint type 2 ∗a = b: merge node-b with the points-to set of node-a and perform

recursive downward merging. If node-a was originally not pointing to any node, then we

simply add a points-to relation from node-a to node-b.

The challenge of implementing Steensgaard’s algorithm on LLVM is that we need to gen-

13

www.manaraa.com

Figure 5.3: Steensgaard’s complex1 constraint

Figure 5.4: Steensgaard’s complex2 constraint

erate constraints from LLVM IR instead of from source languages such as C. We need to find

a correspondence between LLVM IR instruction and Steensgaard’s constraints and perform the

appropriate actions for each LLVM IR instruction.

5.1 Store Instruction

An LLVM IR store instruction is used to write value to memory. It has syntax:

store <ty> <value>, <ty>* <pointer>

The following C source code

1 int x;

2 int *p;

3 p = &x;

14

www.manaraa.com

when compiled to LLVM IR using clang generates the following instructions:

1 %x = alloca i32 , align 4

2 %p = alloca i32*, align 8

3 store i32* %x, i32** %p, align 8

On line 3 of this IR code, the memory address of x is written to pointer− p (i.e. pointer− p

now points to x). The store instruction is equivalent to Steensgaard’s Complex constraint type 2

∗a = b. To model it, we merge value-node with the set of nodes that pointer-node is pointing to

and update the points-to of pointer-node to the new representative node of the merged set, and

we recursively merge downwards. If pointer-node was originally not pointing to any node, then

we add a points-to relation from pointer-node to value-node.

5.2 Load Instruction

An LLVM IR store instruction is used to read value from memory. It has syntax:

<result> = load <ty>, <ty>* <pointer>

The following C source code

1 int *p;

2 *p = 0;

when compiled to LLVM IR using clang generates the following instructions:

1 %p = alloca i32*, align 8

2 %0 = load i32** %p, align 8

3 store i32 0, i32* %0, align 4

On line 2 of this IR code, p’s pointing memory address is loaded to %0, and on line 3 the constant

value 0 is written to %0. We can treat the load instruction as an one level dereferencing. %0 in this

example is conceptually equivalent to ∗p in the source language. In this sense, the load instruction

is equivalent to Steengaard’s complex constraint type 1 a = ∗b. To model the load instruction,

15

www.manaraa.com

merge result-node with the points-to set of pointer-node and perform recursive downward merging.

If pointer-node was originally not pointing to any node, then we add a points-to relation from

pointer-node to result-node.

5.3 Call Instruction

Since we are implementing an inter-procedural Steensgaard, we need to handle function call

instructions. The call instruction has syntax:

<result> = call <ty> <fnptrval>(<function args>)

The result is the return value of the function call with type ty. fnptrval is the identifier of the

called function, and function args is a list of arguments that gets passed in to the function. The

following C code:

1 int g;

2 void f(int *fp) { *fp =10; }

3 int main(){

4 int *p;

5 p = &g;

6 f(p);

7 return 0;

8 }

when compiled to LLVM IR:

1 @g = global i32 0, align 4

2

3 ; Function Attrs: nounwind uwtable

4 define void @_Z1fPi(i32* %fp) #0 {

5 entry:

6 %fp.addr = alloca i32*, align 8

7 store i32* %fp , i32** %fp.addr , align 8

8 %0 = load i32** %fp.addr , align 8

9 store i32 10, i32* %0, align 4

10 ret void

16

www.manaraa.com

11 }

12

13 ; Function Attrs: nounwind uwtable

14 define i32 @main () #0 {

15 entry:

16 %retval = alloca i32 , align 4

17 %p = alloca i32*, align 8

18 store i32 0, i32* %retval

19 store i32* @g , i32** %p, align 8

20 %0 = load i32** %p, align 8

21 call void @_Z1fPi(i32* %0)

22 ret i32 0

23 }

In the source language, we have an actual parameter int *p (line 6) when calling function f,

and we have int *fp (line 2) as a formal parameter. Function call in C is strictly call-by-value,

that is, in the beginning of a function call, the value of the actual parameter gets copied to the

value of the formal parameter. In this case, at line 20 in the IR, the memory address that p is

pointing to is loaded to %0. %0 then gets copied to the formal parameter %fp (line 21 and 4).

Notice that %fp now has the memory address that p is pointing to, not the memory address of

p. At line 6, a pointer %fp.addr is created, and %fp is stored to this new memory location.

This parameter passing mechanism is equivalent to Steensgaard’s simple constraint a = b. To

model it, we inspect the call instruction, find the function that is being called, merge the actual

parameters and formal parameters nodes as we do for simple constraint, and create points to

relation according to the load and store instruction.

In this example, we add a points to relation from %p to %0 (line 20). We merge %0 with %fp.

Then we add a points to relation from fp.addr to fp. As result, %p and %fp.addr are aliases

because they both point to %0 and %fp.

Now to handle functions that return pointers, consider this example:

1 int a, b;

2 int* f() {

17

www.manaraa.com

3 if (a > 10)

4 return &a;

5 else

6 return &b;

7 }

8 int main(){

9 int *p;

10 p = f();

11 return 0;

12 }

This C code when compiled to LLVM IR generates:

1 @a = global i32 0, align 4

2 @b = global i32 0, align 4

3

4 ; Function Attrs: nounwind uwtable

5 define i32* @_Z1fv () #0 {

6 entry:

7 %retval = alloca i32*, align 8

8 %0 = load i32* @a, align 4

9 %cmp = icmp sgt i32 %0, 10

10 br i1 %cmp , label %if.then , label %if.else

11

12 if.then:

; preds = %entry

13 store i32* @a , i32** %retval

14 br label %return

15

16 if.else:

; preds = %entry

17 store i32* @b , i32** %retval

18 br label %return

19

20 return:

; preds = %if.else , %if.then

18

www.manaraa.com

21 %1 = load i32** %retval

22 ret i32* %1

23 }

24

25 ; Function Attrs: nounwind uwtable

26 define i32 @main () #0 {

27 entry:

28 %retval = alloca i32 , align 4

29 %p = alloca i32*, align 8

30 store i32 0, i32* %retval

31 %call = call i32* @_Z1fv ()

32 store i32* %call , i32** %p, align 8

33 ret i32 0

34 }

Note that, at line 31 in the IR code, in opposed to the previous example, the function return

type is now i32∗ (i.e. a 32-bit integer pointer). In this example, function f has two return

statements (line 4 and 6) in the C code. In the IR code, however, there is only one return

instruction (line 22) for function f. The IR return node %1’s value depends on the control flow.

In reality a function may have any number of return statements. Because we are implementing a

flow-insensitive alias analysis, without knowing anything about the control flow of the program,

we have to treat every return statement as a possible candidate. This causes imprecision in our

alias analysis result, however, it is inevitable for flow-insensitive alias analyses.

The call instruction of function returning pointer is also equivalent to the Steensgaard’s simple

constraint. To model it, we first find all return nodes in the called function by linearly scan through

all instructions. We then merge the result node of the call instruction with every return nodes in

the function being called.

In this particular example, we merge %call with %1. Combining with previously described

modeling method for load and store instructions, we have: %p pointing to %call (line 32), %retval

pointing to {@a, @b} (line 13 and 17), and %retval pointing to {%1, %call} (line 21, 22 and 31).

Furthermore, since {@a, @b} and {%1, %call} are both pointed by %retval, we merge the two

19

www.manaraa.com

sets so that %retval points to {@a, @b, %1, %call}.

In result, we know that %p and %retval both point to the set {@a, @b, %1, %call}, i.e., they

are aliases.

5.4 GetElementPtr Instruction

The LLVM IR GetElementPtr (Get Element Pointer) instruction is used to get the address of

a subelement of an aggregate data structure (i.e. self-defined struct or C array). It performs

address calculation only and does not access memory. GetElementPtr has syntax:

<result> = getelementptr inbounds <ty>* <ptrval>{, <ty> <idx>}*

The first <ty> defines the type of the aggregate data structure <ptrval>. The following

list of <ty> <idx> indicates the indexes of elements that we are interested in. The calculated

address is then stored in <result>. Consider the following C source code:

1 int a[10];

2 int *p;

3 p = &a[2];

when compiled to LLVM IR, it becomes:

1 %a = alloca [10 x i32], align 16

2 %p = alloca i32*, align 8

3 %arrayidx = getelementptr inbounds [10 x i32]*

%a, i32 0, i64 2

4 store i32* %arrayidx , i32** %p, align 8

At line 3, notice that the aggregate data structure we are interested in is the integer array a.

It has type [10 x i32]* (i.e. a pointer to ten 32-bit integers). The first term in the list at the end

i32 0 indexes the first term of %a. The second term in the list i64 2 indexes the term that we

are interested (i.e. a[2]). As a result, this instruction returns the address of a[2].

While it is possible to implement a field-sensitive Steensgaard, we started with a field-insensitive

version for simplicity. Field-insensitivity allows us to ignore fields in aggregate data structures

20

www.manaraa.com

and different indexes in arrays. For this reason, dealing with GetElementPtr is simple. It is

equivalent to the Steensgaard’s simple constraint where we simply merge the <result> node with

the <ptrval> node.

In this example, we merge %arrayidx with %a. From line 4 of the IR code, we know that %p

points to %arrayidx. But because we do not distinguish %arrayidx and %a, our result would be

that %p may point to any element in the a array.

5.5 PHI Instruction

LLVM IR uses static single assignment form (SSA) to represent variables. SSA form requires that

every variable be defined before its use, and that each variable is assigned exactly once. This is

achieved by splitting existing variables into many variations. Suppose given this code:

1 x = 1;

2 x = 2;

3 y = x;

when SSA is enforced, the code can be represented as:

1 x1 = 1;

2 x2 = 2;

3 y1 = x2;

SSA allows compilers to perform many kinds of optimizations such as constant propagation,

value range propagation, sparse conditional constant propagation, dead code elimination, partial

redundancy elimination, etc. However, when there are control branches in the program, we need

some kind of mechanism to determine which branch was executed. Consider this code:

1 x = 0;

2 if (x > 0)

3 y = 1;

4 else

5 y = 2;

21

www.manaraa.com

6

7 z = y;

when translated to SSA form, we have:

1 x1 = 0;

2 if (x1 > 0)

3 y1 = 1;

4 else

5 y2 = 2;

6

7 z1 = y?;

There is no way to statistically determine which branch was executed, hence the compiler would

not know which y to use at line 7. The solution is to create a PHI node right before line 7. It

creates a new variable y3 by choosing either y1 or y2 depending on the executed control path.

PHI node in LLVM IR has syntax:

<result> = phi <ty> [<val0>, <label0>], ...

where <result> is the new SSA variable, <ty> is the type of the variable, and [<val0>, <label0>]

is the list of SSA variables with labels of the corresponding control flow branches of each SSA

variable.

When dealing with PHI instruction, we do not know which branch we arrive from because

we are implementing flow-insensitive alias analysis. The PHI instruction is equivalent to the

Steensgaard’s simple constraint. To model the PHI instruction, we simply merge all SSA variables

in the list with the result node.

5.6 BitCast Instruction

The BitCast instruction is used to convert variable of one type to another without changing any

bit. The syntax is:

<result> = bitcast <ty> <value> to <ty2>

22

www.manaraa.com

where <result> is the variable of new type, <ty> is the original type, <value> is the variable

to cast from, and <ty2> is the new type. BitCast can handle, for example, pointer type castings

in C programs. The following code:

1 char c = ’0’;

2 char *p = &c;

3 int *q = (int *)p;

when compiled to LLVM IR becomes:

1 %c = alloca i8 , align 1

2 %p = alloca i8*, align 8

3 %q = alloca i32*, align 8

4 store i8 48, i8* %c, align 1

5 store i8* %c, i8** %p, align 8

6 %0 = load i8** %p, align 8

7 %1 = bitcast i8* %0 to i32*

8 store i32* %1, i32** %q, align 8

Steensgaard’s alias analysis does not deal with data types. The BitCast instruction is equiv-

alent to Steensgaard’s simple constraint. To model the BitCast instruction, we simply merge

<value> with <result>.

5.7 IntToPtr Instruction

IntToPtr (Integer To Pointer) is also a type casting instruction. As its name suggests, it converts

an integer to a pointer. The syntax for IntToPtr is:

<result> = inttoptr <ty> <value> to <ty2>

where <result> is the returned pointer, <ty> is the original type, <value> is the integer, and

<ty2> is the new type. IntToPtr can be generated when certain pointer type castings in C

programs are compiled. The following code:

1 int a = 0;

23

www.manaraa.com

2 int *p;

3 p = (int *)a;

when compiled to LLVM IR becomes:

1 %a = alloca i32 , align 4

2 %p = alloca i32*, align 8

3 store i32 0, i32* %a, align 4

4 %0 = load i32* %a, align 4

5 %conv = sext i32 %0 to i64

6 %1 = inttoptr i64 %conv to i32*

7 store i32* %1, i32** %p, align 8

Similar to BitCast, IntToPtr is equivalent to Steensgaard’s simple constraint. We model it by

merging <value> and <result>.

5.8 Select Instruction

The Select instruction is used to choose one value base on condition without branching. The

syntax for Select is:

<result> = select selty <cond>, <ty> <val1>, <ty> <val2>

If <cond> is true then choose <val1>, otherwise choose <val2>.The following C statement:

1 p > 10 ? 1: 2

when compiled to LLVM IR becomes:

1 %cond = select i1 %cmp , i32 1, i32 2

Since we do not know the result of the condition, it is equivalent to Steensgaard’s simple

constraint. We merge <result>, <val1> and <val2>.

24

www.manaraa.com

5.9 Other Pointer Related Instructions

There are several other LLVM IR instructions that perform operations on pointers. They are

VAArg, ExtractValue, InsertValue, LandingPad, Resume, AtomicRMW and AtomicCmpXchg.

They are seldom used comparing to the instructions introduced earlier. These instructions do

effect pointer relations, but they are not yet supported by our Steensgaard’s implementation.

Some of them are simple to handle while others are more challenging to handle (such as VAArg).

We hope to add support for these instructions in the future.

25

www.manaraa.com

Chapter 6

Evaluation

There are mainly three areas of interest when evaluating a pointer analysis: precision, time and

memory usage. This chapter presents our evaluation results for the following four algorithm

implementations:

1. Basic alias analysis implemented on LLVM 3.5

2. Andersen’s pointer analysis implemented on LLVM 3.5

3. Data Structure alias analysis implemented on LLVM 3.5

4. Our own Steensgaard’s pointer analysis implemented on LLVM 3.5

Source codes from the standard benchmark suite SPEC CPU2006 as well as some other well

known open source projects were used for evaluation. Specifically, the benchmarks we used are

shown in Table 6.1.

Benchmark Bitcode size Number of pointers

mcf 43KB 1014

astar 90KB 2182

gzip 171KB 1813

bzip2 187KB 3947

nginx 4.4MB 27663

gcc 5.7MB 231778

Table 6.1: Evaluation benchmarks

26

www.manaraa.com

6.1 Precision

There exists many different metrics for evaluating the precision of a pointer analysis. Some

intuitive metrics include

1. Number of pointer-equivalent classes: higher number means better precision since more pairs

of pointers are determined to be non-aliases.

2. Average size of the points-to set of all pointers: the points-to set is the set of variables

that a pointer may point to. Larger size of such sets means that the analysis is unable to

determine precise points-to information hence lower precision.

3. Percentage of may point to pointer pairs over all pointer pairs: it is similar to the average

size of points-to set metric. It computes the number of pointer pairs that result in may-point-

to and divides this number with the number of all possible pointer pairs. Lower percentage

means higher analysis precision.

We choose to use the may-point-to percentage as our precision metric because it is a built-in

pass in LLVM 3.5 (the aa-eval pass). This allows us to compare different alias analysis imple-

mentations on a fair perspective since all of our alias analyses are implemented on LLVM 3.5.

Our experiment result is shown in Table 6.21. We found that basic alias analysis can achieve

pretty decent precision when analyzing smaller programs. This is mainly contributed by its pseudo

context sensitive and pseudo field sensitive rules. However, the effect of basic alias analysis’ rules

diminishes as the size of the program grows.

Notice that in Table 6.2, the precision of Andersen’s pointer analysis is strictly better than

the precision of Steensgaard’s pointer analysis. This is somewhat an indication that both the

Andersen’s and Steensgaard’s are correctly implemented. Andersen’s subset based approach is

more precise than Steensgaard’s unification based approach by definition. In addition, notice

that DSA also performs strictly better than Steensgaard’s in all benchmark cases. This is the

case because DSA is an Steensgaard’s style (unification based) alias analysis with added context

sensitivity and field sensitivity.

1Some values are missing because they took too long to compute.

27

www.manaraa.com

Furthermore, DSA is shown to be slightly more precise than Andersen’s pointer analysis on all

benchmarks. This result confirms the result obtained by [7] in which the author claims DSA can

be as precise as Andersen’s for many benchmark cases and slightly more precise than Andersen’s

for some other cases.

Benchmark Bitcode size # pointers Basic-AA Andersen’s Steensgaard’s DSA

mcf 43KB 1014 85.7% 74.9% 91.6% 70.8%

astar 90KB 2182 50.6% 49.3% 90.1% 38.8%

gzip 171KB 1813 39.3% 35.6% 52.4% 31.9%

bzip2 187KB 3947 72.7% 88.1% 96.1% 86.3%

nginx 4.4MB 27663 89.5% 87.9% 88.3% 87.2%

gcc 5.7MB 231778 95.9% —* —* 82.9%

Table 6.2: May-alias percentage comparison

Figure 6.1: May-alias percentage comparison

An advantage of implementing alias analysis on LLVM is that it is easy to chain multiple

passes. We can perform one alias analysis followed by a different alias analysis in the sense that

whenever the first alias analysis reports may alias, we pass the pair of pointers to the next alias

analysis and see if it can derive further information about the pair of pointers.

In this research, we evaluated the precisions when chaining basic alias analysis with Andersen’s,

basic alias analysis with Steensgaard’s and basic alias analysis with DSA. The result is presented

in Table 6.32.

2Some values are missing because they took too long to compute.

28

www.manaraa.com

Benchmark Bitcode size # pointers Basic+Anders Basic+Steens Basic+DSA

mcf 43KB 1014 65.9% 80.4% 62.5%

astar 90KB 2182 27.7% 47.1% 20.4%

gzip 171KB 1813 14.5% 21.0% 11.3%

bzip2 187KB 3947 69.1% 69.5% 67.4%

nginx 4.4MB 27663 82.0% 80.2% 81.0%

gcc 5.7MB 231778 —* —* 81.3%

Table 6.3: Chained may-alias percentage comparison

Figure 6.2: Chained may-alias percentage comparison

By chaining basic alias analysis, we see an average precision gain of 12 percent for DSA,

15 percent for Andersen’s and 24 percent for Steensgaard’s. This result shows that Andersen’s,

Steensgaard’s and DSA can achieve similar precision when chained with basic alias analysis (espe-

cially on larger benchmarks). In the next section, we evaluate the execution time of each analysis

for analyzing the benchmarks.

6.2 Time

We use the LLVM built-in pass -time-passes to measure the execution time of each of our alias

analysis passes on all benchmarks.

We compare the number of nodes versus execution time instead of bitcode size because the

theoretical time complexity of the algorithms are expressed in terms of number of nodes. Also note

that the y-axis in Figure 6.2 is in logarithmic scale for readability. Our experiment shows that the

29

www.manaraa.com

Benchmark Bitcode size # pointers Basic-AA Andersen’s Steensgaard’s DSA

mcf 43KB 1014 0.01 sec 0.03 sec 0.08 sec 0.03 sec

astar 90KB 2182 0.04 sec 0.15 sec 0.51 sec 0.08 sec

gzip 171KB 1813 0.05 sec 0.05 sec 0.46 sec 0.13 sec

bzip2 187KB 3947 0.08 sec 0.16 sec 1.9 sec 0.17 sec

nginx 4.4MB 27663 0.5 sec 47 min 1.2 min 11.7 sec

gcc 5.7MB 231778 2.8 sec 1320 min 50 min 4.0 min

Table 6.4: Analysis time comparison

Figure 6.3: Analysis time comparison

time complexity of Andersen’s implementation in practice can be as fast as O(N2) (better than

its theoretical complexity O(N3)). Our implementation of Steensgaard’s shows almost linear time

complexity and so does the DSA while basic alias analysis shows sub-linear time performance.

6.3 Memory

We use the analysis tool Valgrind to measure the memory usage. We record the total heap allo-

cation size of each algorithm when analyzing the benchmarks. The result is shown in Table 6.5.3

As a result, DSA uses the most memory. However, the memory usage of DSA on all bench-

marks are shown to be practical on average modern computing environment. Andersen’s pointer

analysis uses less memory than DSA, Steensgaard’s pointer analysis uses less memory than An-

dersen’s, and basic alias analysis uses the least amount of memory when analyzing programs.

Figure 6.3 shows that even in the case of DSA, memory usage grows linearly with the number of

3Some values are missing because they took too long to compute.

30

www.manaraa.com

Benchmark Bitcode size # pointers Basic-AA Andersen’s Steensgaard’s DSA

mcf 43KB 1014 1.53 MB 2.34 MB 1.72 MB 2.75 MB

astar 90KB 2182 2.83 MB 4.66 MB 3.26 MB 5.98 MB

gzip 171KB 1813 4.96 MB 6.03 MB 5.45 MB 9.19 MB

bzip2 187KB 3947 6.18 MB 9.69 MB 7.01 MB 9.73 MB

nginx 4.4MB 27663 118 MB —* 123 MB 323 MB

gcc 5.7MB 231778 172 MB —* —* 2336 MB

Table 6.5: Memory usage comparison

Figure 6.4: Memory usage comparison

nodes.

31

www.manaraa.com

Chapter 7

Conclusion

This research provides a comprehensive study of alias analysis. We implemented a Steensgaard’s

pointer analysis at LLVM IR level on LLVM 3.5. We evaluated the precision, time and memory

usage of rule based alias analysis, Andersen’s and Steensgaard’s pointer analysis and data struc-

ture analysis. As a result, we found that DSA combined with basic alias analysis provides the

best precision among the algorithms we studied. In addition, we found DSA to be the fastest

algorithm (except basic alias analysis) among all. Even though DSA uses the most memory when

performing analysis, the amount of memory needed is acceptable for most modern computers.

Our implementation of Steensgaard’s pointer analysis performed worse than DSA in terms of pre-

cision and speed, but it is the only implementation of this theoretically very important algorithm

in the current LLVM release. It provides a good point of reference for future studies on LLVM

alias analysis.

32

www.manaraa.com

Bibliography

[1] L. Andersen. Program Analysis and Specialization for the C Programming Language. Master’s

thesis, DIKU, University of Copenhagen, Copenhagen, Denmark, 1994.

[2] M. Das. Unification-based pointer analysis with directional assignments. ACM Programming

language design and implementation, 35(5):35–46, 2000.

[3] B. Hardekopf and C. Lin. Exploiting Pointer and Location Equivalence to Optimize Pointer

Analysis. International Static Analysis Symposium, pages 265–280, 2007.

[4] B. Hardekopf and C. Lin. The Ant and the Grasshopper: Fast and Accurate Pointer Anal-

ysis for Millions of Lines of Code. ACM Programming language design and implementation,

42(6):290–299, 2007.

[5] M. Hind. Pointer Analysis: Haven’t We Solved This Problem Yet? ACM Program analysis

for software tools and engineering, pages 54–61, 2001.

[6] M. Hind, M. Burke, P. Carini, and J. Choi. Interprocedural pointer alias analysis. ACM

Transactions on Programming Languages and Systems, 21(4):848–894, 1999.

[7] C. Lattner, A. Lenharth, and V. Adve. Making Context-sensitive Points-to Analysis with

Heap Cloning Practical For The Real World. PLDI, 2007.

[8] B. Steensgaard. Points-to Analysis in Almost Linear Time. Principles of programming lan-

guages, pages 32–41, 1996.

33

www.manaraa.com

Biography

Sheng-Hsiu Lin received his Bachelor of Science in Mathematics from Lehigh University in 2011.

He received his Master of Engineering in Energy Systems Engineering from Lehigh University in

2013. He is expected to receive his Master of Science in Computer Science from Lehigh University

in 2015.

34

	Lehigh University
	Lehigh Preserve
	2015

	Alias Analysis in LLVM
	Sheng-Hsiu Lin
	Recommended Citation

	tmp.1498661647.pdf.FcikH

